#A. LIS 翻转

    Type: RemoteJudge 1000ms 256MiB

LIS 翻转

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题面翻译

设一个长为 nn 的整数序列 aa{a1,a2,a3,,an}\{a_1,a_2,a_3,\cdots,a_n\},那么 aa' 表示 {an,an1,an2,,a1}\{a_n,a_{n-1},a_{n-2},\cdots,a_1\}LIS(a)\operatorname{LIS}(a) 表示 aa 的最长严格上升子序列的长度。

现在给定 aa 数组,请你将 aa 数组重新排列,使得重排后的 min(LIS(a),LIS(a))\min(\operatorname{LIS}(a),\operatorname{LIS}(a')) 最大。

输入 tt 组数据,每组数据先输入 nn ,然后输入 nn 个整数,所有 nn 之和不超过 2×1052 \times 10^5

输出 tt 行,每行一组数据的答案,按输入顺序输出。

题目描述

You are given an array a a of n n positive integers.

Let LIS(a) \text{LIS}(a) denote the length of longest strictly increasing subsequence of a a . For example,

  • LIS([2,1,1,3]) \text{LIS}([2, \underline{1}, 1, \underline{3}]) = 2 2 .
  • LIS([3,5,10,20]) \text{LIS}([\underline{3}, \underline{5}, \underline{10}, \underline{20}]) = 4 4 .
  • LIS([3,1,2,4]) \text{LIS}([3, \underline{1}, \underline{2}, \underline{4}]) = 3 3 .

We define array a a' as the array obtained after reversing the array a a i.e. a=[an,an1,,a1] a' = [a_n, a_{n-1}, \ldots , a_1] .

The beauty of array a a is defined as min(LIS(a),LIS(a)) min(\text{LIS}(a),\text{LIS}(a')) .

Your task is to determine the maximum possible beauty of the array a a if you can rearrange the array a a arbitrarily.

输入格式

The input consists of multiple test cases. The first line contains a single integer t t (1t104) (1 \leq t \leq 10^4) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer n n (1n2105) (1 \leq n \leq 2\cdot 10^5) — the length of array a a .

The second line of each test case contains n n integers a1,a2,,an a_1,a_2, \ldots ,a_n (1ai109) (1 \leq a_i \leq 10^9) — the elements of the array a a .

It is guaranteed that the sum of n n over all test cases does not exceed 2105 2\cdot 10^5 .

输出格式

For each test case, output a single integer — the maximum possible beauty of a a after rearranging its elements arbitrarily.

样例 #1

样例输入 #1

3
3
6 6 6
6
2 5 4 5 2 4
4
1 3 2 2

样例输出 #1

1
3
2

提示

In the first test case, a a = [6,6,6] [6, 6, 6] and a a' = [6,6,6] [6, 6, 6] . LIS(a)=LIS(a) \text{LIS}(a) = \text{LIS}(a') = 1 1 . Hence the beauty is min(1,1)=1 min(1, 1) = 1 .

In the second test case, a a can be rearranged to [2,5,4,5,4,2] [2, 5, 4, 5, 4, 2] . Then a a' = [2,4,5,4,5,2] [2, 4, 5, 4, 5, 2] . LIS(a)=LIS(a)=3 \text{LIS}(a) = \text{LIS}(a') = 3 . Hence the beauty is 3 3 and it can be shown that this is the maximum possible beauty.

In the third test case, a a can be rearranged to [1,2,3,2] [1, 2, 3, 2] . Then a a' = [2,3,2,1] [2, 3, 2, 1] . LIS(a)=3 \text{LIS}(a) = 3 , LIS(a)=2 \text{LIS}(a') = 2 . Hence the beauty is min(3,2)=2 min(3, 2) = 2 and it can be shown that 2 2 is the maximum possible beauty.

1.16测试题

Not Attended
Status
Done
Rule
IOI
Problem
3
Start at
2024-1-16 15:00
End at
2024-1-16 18:00
Duration
3 hour(s)
Host
Partic.
0