#B. 辰辰的求助

    Type: RemoteJudge 1000ms 512MiB

辰辰的求助

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

辰辰遇到了一个数学问题,请求小伙伴们帮忙,问题如下:

给定一个正整数 kk,有 kk 次询问,每次给定三个正整数 ni,ei,din_i, e_i, d_i,求两个正整数 pi,qip_i, q_i,使 ni=pi×qin_i = p_i \times q_iei×di=(pi1)(qi1)+1e_i \times d_i = (p_i - 1)(q_i - 1) + 1

输入格式

第一行一个正整数 kk,表示有 kk 次询问。

接下来 kk 行,第 ii 行三个正整数 ni,di,ein_i, d_i, e_i

输出格式

输出 kk 行,每行两个正整数 pi,qip_i, q_i 表示答案。

为使输出统一,你应当保证 piqip_i \leq q_i

如果无解,请输出 NO

10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88

提示

【样例 #2】

见附件中的 decode/decode2.indecode/decode2.ans

【样例 #3】

见附件中的 decode/decode3.indecode/decode3.ans

【样例 #4】

见附件中的 decode/decode4.indecode/decode4.ans

【数据范围】

以下记 m=ne×d+2m = n - e \times d + 2

保证对于 100%100\% 的数据,1k1051 \leq k \leq {10}^5,对于任意的 1ik1 \leq i \leq k1ni10181 \leq n_i \leq {10}^{18}1ei×di10181 \leq e_i \times d_i \leq {10}^{18}1m1091 \leq m \leq {10}^9

测试点编号 kk \leq nn \leq mm \leq 特殊性质
11 10310^3 10310^3 保证有解
22
33 10910^9 6×1046\times 10^4 保证有解
44
55 10910^9 保证有解
66
77 10510^5 101810^{18} 保证若有解则 p=qp=q
88 保证有解
99
1010

北辰OI CSP-J模拟测试(一)

Not Attended
Status
Done
Rule
IOI
Problem
4
Start at
2023-9-21 7:30
End at
2023-9-21 17:30
Duration
10 hour(s)
Host
Partic.
7